T-equivariant disc potential and SYZ mirror construction
نویسندگان
چکیده
We develop a $G$-equivariant Lagrangian Floer theory and obtain curved $A_\infty$ algebra, in particular disc potential. construct Morse model, which counts pearly trees the Borel construction $L_G$. When applied to smooth moment map fiber of semi-Fano toric manifold, our recovers $T$-equivariant Landau-Ginzburg mirror Givental. also study $\bS^1$-equivariant typical singular SYZ (i.e. pinched torus) compute its potential via gluing technique developed \cite{CHL18,HKL}.
منابع مشابه
On Syz Mirror Transformations
In this expository paper, we discuss how Fourier-Mukai-type transformations (SYZ mirror transformations) can be applied to provide geometric explanations for various mirror symmetry phenomena, including cases where quantum corrections do exist.
متن کامل1 SYZ and Homological Mirror Symmetry Workshop Program
Cohen and Cohen-Jones-Segal have written about how to lift Floer-type invariants to spectra in the sense of stable homotopy theory. We'll talk about new and conjectural ways to lift Floer-type invariants to spectra.
متن کاملA dual polytope from the SYZ construction
For a particular toric variety, I explore to what extent the SYZ conjecture applied to the orbits of the torus action gives the mirror manifold, in the sense of Batyrev’s mirror construction using reflexive polytopes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2023
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2023.109209